libmove3d-planners
|
Public Member Functions | |
virtual bool | setNumTimeSteps (const int num_time_steps)=0 |
Sets the number of time steps used in reinforcement learning. More... | |
virtual bool | getNumTimeSteps (int &num_time_steps)=0 |
Gets the number of time steps used in reinforcement learning. More... | |
virtual bool | getNumDimensions (int &num_dimensions)=0 |
Gets the number of dimensions. More... | |
virtual bool | getNumParameters (std::vector< int > &num_params)=0 |
Gets the number of policy parameters per dimension. More... | |
virtual bool | getBasisFunctions (std::vector< Eigen::MatrixXd > &basis_functions)=0 |
Gets the basis functions that multiply the policy parameters in the dynamical system. More... | |
virtual bool | getControlCosts (std::vector< Eigen::MatrixXd > &control_costs)=0 |
Gets the positive semi-definite matrix of the quadratic control cost The weight of this control cost is provided by the task. More... | |
virtual bool | updateParameters (const std::vector< Eigen::MatrixXd > &updates)=0 |
Update the policy parameters based on the updates per timestep. More... | |
virtual bool | getParameters (std::vector< Eigen::VectorXd > ¶meters)=0 |
Get the policy parameters per dimension. More... | |
virtual bool | setParameters (const std::vector< Eigen::VectorXd > ¶meters)=0 |
Set the policy parameters per dimension. More... | |
virtual bool | computeControlCosts (const std::vector< Eigen::MatrixXd > &control_cost_matrices, const std::vector< std::vector< Eigen::VectorXd > > ¶meters, const double weight, std::vector< Eigen::VectorXd > &control_costs)=0 |
Compute the control costs over time, given the control cost matrix per dimension and parameters over time. More... | |
virtual bool | computeControlCosts (const std::vector< Eigen::MatrixXd > &control_cost_matrices, const std::vector< Eigen::VectorXd > ¶meters, const std::vector< Eigen::VectorXd > &noise, const double weight, std::vector< Eigen::VectorXd > &control_costs)=0 |
|
pure virtual |
Compute the control costs over time, given the control cost matrix per dimension and parameters over time.
control_cost_matrices | (input) [num_dimensions] num_parameters x num_parameters: Quadratic control cost matrix (R) |
parameters | (input) [num_dimensions][num_time_steps] num_parameters: Parameters over time (can also be theta + projected noise) |
weight | (input) constant multiplier for the control costs |
control_costs | (output) [num_dimensions] num_time_steps: Control costs over time |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Gets the basis functions that multiply the policy parameters in the dynamical system.
basis_function_matrix_array | (output) Array of "num_time_steps x num_parameters" matrices, per dimension |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Gets the positive semi-definite matrix of the quadratic control cost The weight of this control cost is provided by the task.
control_cost_matrix | (output) Array of square, positive semi-definite matrix: num_params x num_params |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Gets the number of dimensions.
num_dimensions | (output) number of dimensions |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Gets the number of policy parameters per dimension.
num_params | (output) vector of number of parameters per dimension |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Gets the number of time steps used in reinforcement learning.
num_time_steps |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Get the policy parameters per dimension.
parameters | (output) array of parameter vectors |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Sets the number of time steps used in reinforcement learning.
num_time_steps |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Set the policy parameters per dimension.
parameters | (input) array of parameter vectors |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.
|
pure virtual |
Update the policy parameters based on the updates per timestep.
updates | (input) parameter updates per time-step, num_time_steps x num_parameters |
Implemented in stomp_motion_planner::CovariantTrajectoryPolicy.