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Abstract— This paper presents MORSE, a new open-source
robotics simulator. MORSE provides several features of interest
to robotics projects: it relies on a component-based architecture
to simulate sensors, actuators and robots; it is flexible, able to
specify simulations at variable levels of abstraction according
to the systems being tested; it is capable of representing a
large variety of heterogeneous robots and full 3D environments
(aerial, ground, maritime); and it is designed to allow simu-
lations of multiple robots systems. MORSE uses a “Software-
in-the-Loop” philosophy, i.e. it gives the possibility to evaluate
the algorithms embedded in the software architecture of the
robot within which they are to be integrated. Still, MORSE
is independent of any robot architecture or communication
framework (middleware).

MORSE is built on top of Blender, using its powerful
features and extending its functionality through Python scripts.
Simulations are executed on Blender’s Game Engine mode,
which provides a realistic graphical display of the simulated
environments and allows exploiting the reputed Bullet physics
engine. This paper presents the conception principles of the
simulator and some use—case illustrations.

I. INTRODUCTION

Robotics systems are becoming highly complex and so-
phisticated, with an increasing number of hardware and
software components. There is also an increasing variety
of tasks involved in performing robotics experiments, which
induces much time and resources for validation. The use of a
simulator can ease the development and validation processes,
allowing to verify the component integration and to evaluate
their behaviour under different controlled circumstances.
Roboticists are currently paying a lot of attention to the
development of robotics simulation, as shown in recent
workshops [1] and conferences [2].

Simulation is cheaper in terms of time and human re-
sources than experiments with real robots. It can also provide
more flexibility, by allowing testing under conditions that
would be unfeasible otherwise: a simulated environment
can be significantly more complex and larger than a lab
environment, and meanwhile ensure a perfect repeatability.
Another advantage is the possibility of simulating multiple
robots when the hardware may not be available.

In robotics, we can distinguish two main types of simula-
tors. Those restricted to the validation of a specific kind of
component, e.g. the processing of data provided by a given
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Fig. 1: Screenshots of the MORSE simulator.

sensor or path planning for a particular kinematic system
[31, [4], [5]; such simulators are highly specialised ( “Unitary
Simulation”). On the other hand, some applications require
a more general simulator that can allow the evaluation of
a robot at the system level, i.e. represent all aspects of a
robot as a whole [6]. MORSE belongs to the latter kind of
simulators, which are more versatile, flexible and reusable.

This paper presents the architecture of the MORSE simula-
tor, jointly developed at LAAS and ONERA. It is built on top
of the Blender software and is intended as a general purpose,
modular system simulation of multiple moving robots in
any kind of environment (Fig. 1), and provides a library
of configurable components that can be interconnected to
create any robot configuration. The outline of the paper is as
follows: the motivations and requirements for the develop-
ment of another robotics simulator are stated in Section II.
Section III presents the overall architecture of the simulator
and its components. Section IV shows the current state of
MORSE development, while planned future developments
are presented in Section V. Finally Section VI provides a
general discussion on the MORSE simulator.

II. MOTIVATIONS — REQUIREMENTS

Various commercial robotics simulators are already avail-
able [7], [8], [9], [10], as well as open-source [11], where the
most popular are Player/Stage [12] and Gazebo [13]. These
projects are currently limited in terms of system simulation of
robots in a realistic 3D environment. The MORSE simulator
is an open-source application (BSD-3 clauses) that can be
used in different contexts for the testing and verification of
robotics systems as a whole, at a medium to high level of
abstraction. It is not meant to replace dedicated simulators for
very specific purposes. One of the main interests of creating
a new simulator is making it reusable by researchers and
engineers: MORSE is being developed as part of multiple
projects, each with different restrictions and requirements,



but all related with multiple robot interaction and coopera-
tion, as well as human-robot interaction. The projects require
the representation of heterogeneous robots, each with their
own set of capabilities. For this reason the design of MORSE
must be completely modular, as in many other modern
simulators. Another strong requirement for the simulator is
that it must be capable of interacting with any middleware
used in robotics, and not impose a format that others must
adapt to. MORSE is designed to handle the simulation of
several robots simultaneously, as a distributed application
where the robotics software being evaluated can run on the
same or a different computer as the simulation.

A. Simulation based on Blender

Blender [14] is an open source 3D modelling and ren-
dering application whose main purpose is the creation of
computer generated images and animations. Though it is not
designed as a tool for simulation, it provides many features
that facilitate the development of such an application. There
exists already a community of robotics researchers who use
Blender for some simulations [15], and there is a drive to
improve on this functionality.

The most obvious advantage of using Blender is the high
level of graphical detail that can be achieved in real time,
thanks to the advanced modelling of meshes, and effects
such as texturing, lighting and shaders. The visual aspect is
important when simulating robotic vision, since the images
captured in the virtual world can be realistic enough (see
Fig. 1) to be processed with the same algorithms as real
images. Blender also offers the capability of using several
camera views to follow the evolution of the simulation,
displaying a global view of the scenario, as well as views
from each of the cameras on—board the various robots.

Blender provides the tools necessary to model robots and
scenarios with as much detail as required. Furthermore, it
also gives immediate access to the Bullet engine for physics
simulation. The interface with the modelled objects is already
integrated, and the physical properties of objects can be
specified in control panels. These properties include the
mass and friction of an object, its bounding box to detect
collisions, its interaction with other objects and the force of
gravity in the virtual world. The recent Blender 2.5 version
incorporates the iTasC Inverse Kinematics solver [16], which
permits the use of IK armatures in the Game Engine, useful
for simulating robotic arms and humans.

The element in Blender that permits the development of
an interactive simulation is the Game Engine (GE) mode. It
provides the user with a flexible graphical interface (called
the Logic Bricks) to script behaviour to objects in the scene,
and to define variables (called Logic Properties) associated
with the same objects. One of the Logic Bricks also permits
the use of Python scripts which can interact with the Blender
world though a dedicated API. Additional modules can also
be programmed in Python or C/C++ using SWIG wrappers.

For all the advantages of using Blender, there is also the
drawback of having to understand its (non-trivial) interface,
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Fig. 2: Simulation of a trajectory following process at two
different levels of abstraction. Left: low abstraction simula-
tion, giving linear and angular velocities for the movement.
Right: higher abstraction simulation, using a direct destina-
tion coordinate.

as well as the additional computational overhead of using a
software for a purpose different that expected.

B. Simulation at different levels of abstraction

We aim at defining a simulation infrastructure that can
be exploited to develop and validate a wide spectrum of
robotics functionalities, ranging from the simplest ones, e.g.
navigation in a flat environment, to complex scenarios that
involve a fleet of heterogeneous robots, e.g. aero-terrestrial
teams. For such purposes, the simulator should be able
to work at various levels of abstraction. A realistic (non-
abstract) simulation produces exactly the same data as the
sensors of the actual robot, and accepts actuator commands
as they are sent to the robot, whereas a more abstract
simulation produces and/or accepts higher level data and
commands. Letting the user the possibility to simulate a
robot at various levels of abstraction is essential, as it allows
him to specify the functions he wants to simulate and the
ones he wants to evaluate. For instance, when evaluating
a high level algorithm, it is not necessary to worry about
lower level actions, and an abstract simulation is sufficient.
Fig. 2 and 3 illustrate this point for actuators and sensors,
respectively. They show two possible separations between the
virtual environment and its data (simulation) and the robotics
software to be tested (evaluated software).

C. “Software-in-the-Loop”

MORSE is designed to interact directly with the eval-
uated software exactly as it is, without the need of any
modifications to the software. This philosophy takes after
“Hardware-in-the-Loop” simulations, in which the evaluated
components are run on the target hardware and interact with
the simulator with the very same protocols than the ones
of the actual robots sensors and actuators [17], in order to
make the shift from simulations to actual experiments totally
transparent. “Software-in-the-Loop” means that when linked
with the simulator, the evaluated components are embedded
in the same target architecture than the considered robot:
MORSE can link with the evaluated software layer by the use
of any middleware, as explained in the next section. MORSE
is nevertheless independent of any middleware, and can
be used in scenarios involving simultaneously robots with
different software architectures: contrary to some simulation
schemes (e.g. [18]), MORSE is not tied to any specific robot
middleware or software architecture.
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Fig. 3: Simulation of the perception of a 3D scene at two
different levels of abstraction. Top: the simulation produces
an image pair (as a stereo vision bench would) that is further
processed “on—board the robot” to produce a 3D vector rep-
resentation of the perceived scene. Bottom: a more abstract
simulation directly produces the 3D representation directly
from the Blender geometry. In this latter case, a “noise
function” within the simulator reproduces the imperfect data
generated by the stereo vision process.

III. OVERALL ARCHITECTURE
A. Modular design

MORSE, while dedicated to robotic simulation, relies on
the Blender approach of file composition to build simulated
scenes: one scene can reference a Blender object stored
in other file. When the original object is updated, this is
in turn reflected in all scenes that depend on this asset.
MORSE makes use of this modular philosophy, providing a
library of simple components that can be assembled together
with others. Each MORSE component consists of a Python
and a Blender file: The Python file defines an object class
for the component type, with its state variables, data and
logical behaviour (methods). All components extend from
an abstract base MorseObjectClass that defines: the
3D position and orientation relative to the origin of the
Blender world, a local_data dictionary with the infor-
mation the component must share with other elements and a
basic default_action method that individual subclasses
must implement according to their functionality. Sensors and
actuators have also a reference to the robot they are attached
to, and the relative position/orientation with respect to it.
The base class also provides lists of additional functions
that can be added dynamically to the components during
runtime to extend their basic functionality. The Blender file
specifies the visual and physical properties of the object
in the simulated world. The complexity of the component
meshes can vary from a simple cube to a complete robotic
arm of multiple segments. The physical properties include
colour, texture, dynamic properties like friction or mass,
and possibly other data like simplified bounding box models
for collision detection. The Blender file holds as well the
overall component logic (expressed with the so-called Logic
Bricks) that binds Python methods to events generated in

the Blender world. Every component has variables (Logic
Properties) indicating its kind, and the Python file that
provides its class and functionality.

There are currently three different kinds of robotics com-
ponents defined in MORSE.

e Sensors: Recover data from the simulated world, emu-
lating the functionality of the real sensors by using the
logic functionality of the GE.

o Actuators: Produce actions upon the associated robots
or components. In particular, actuators move the robots
based on a given parameter: destination coordinates
or linear/angular velocities. Other actuators can affect
other components, such as the position of arms or pan-
tilt units on robots.

o Robots: The platforms where sensors and actuators are
mounted. They also define the physical properties (size,
weight, friction, mobility, collision bound) of the virtual
robot. Robotic arms are also included in this category.
These are composed of several segments that can be
articulated and that have special actuators.

Besides those, three other classes of components are
available:

e Scenes: Modelled environments where the robot will
interact during the simulation. MORSE provides some
examples like a outdoor scene with trees and buildings
or a furnished indoor room (see Fig. 1). MORSE scenes
are simple Blender scenes and any previously modelled
environment can be reused.

o Middlewares: Communication channels between the
simulator and the evaluated software are set up through
special Blender objects that take care of the bindings
with the simulated sensors and actuators.

o Modifiers: Simulated sensors produce “perfect data”,
with very accurate measures taken from the virtual
world. This is never the case in the real world, where
some sort of noise is always present in the data. It
is possible to add Modifiers that encapsulate functions
to alter the data produced by the simulator, typically
noise functions. These modifiers expose methods that
are inserted in the data flow between the simulation and
the evaluated software.

B. Integration with middlewares

Middlewares are an intermediate layer between different
software systems that enables them to communicate and
share data. Various middlewares are used in robotics, such as
YARP [19], ROS [20], Pocolibs [21] and others [22], [23],
[24]. While middlewares are designed to connect separate
components, if an element is highly coupled with a given
middleware, then it becomes difficult to reuse it in a different
environment. For this reason, components should be designed
to be middleware—independent.

The philosophy of MORSE is influenced by another
software package used at LAAS: G*"oM 3 [25]. It is a tool
to generate software modules that can be compiled with any
middleware. This permits keeping the code of a component
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Fig. 4: The data flow between components of the simulator.

completely separated from the middleware, and only bound
to it when it is necessary. Once a module has been generated,
it can be connected to the rest of the robot software, and
exchange data by means of data structures and requests.

MORSE components (sensors or actuators) store the data
they use in the Python dictionary local_data. However,
to be middleware independent, they do not provide any
functionality destined to share their data with other programs
outside of Blender. We implement a mechanism called hook
to dynamically add middleware bindings when necessary.
The mechanism consists on adding methods to the compo-
nent instances during runtime, thanks to the dynamic nature
of Python. These methods must access the local_data
dictionary and prepare the data to be sent in the format
required by the corresponding middleware. Fig. 4 shows the
data flow of the sensor and actuator components using hooks
to share data with external applications.

The binding of specific components and middlewares
in a simulation scene is defined in a script called
component_config.py, inside the Blender file for the
scene. The script consists of a Python dictionary listing the
components, the middleware and the method each will use
(See example below). When the simulation is started, this
file is read, and the methods listed are added to the class
instance of the components.

component-mw = {
”Motion_Controller”: [”Socket”, “read_message”],
"GPS”: [”Yarp”, “post.message”],
”Gyroscope”: ["Text”, “write_data”],
"PTU”: [”Pocolibs”, "write_viam”,
”morse/middleware/pocolibs/sensors/viam”],
”Sick”: [”Yarp”, "post_sick_data”,
”morse/ middleware/yarp/sick”], }

Thanks to this #ook mechanism, MORSE can run several
middlewares in parallel: one robot could be controlled with
YARP with one of its sensors logged through a socket, while
another robot is managed by a software running Pocolibs.
MORSE middleware modules are considered as optional
plug—ins. An instance of them is created if necessary, with the
initialization routine specific to each. They also implement
the basic data serialisation necessary to transfer information
to external software. To simplify deployment, each middle-
ware module provides a default, basic data serialization for
the common data types. For more complex data (as is the
case for images, arrays or other structures) an additional
module must be included that will define the specific se-
rialisation necessary for each data structure. In its current
version, MORSE has support for YARP, Pocolibs, ROS, raw
sockets and a dummy text-based input/output mechanism
(useful for creating logs). Modifiers also make use of the
hook mechanism to add noise or otherwise alter the data of
each component. Currently there exists modifiers that can
generate gaussian noise, and others that convert coordinates
to UTM (Universal Global Mercator) used by GPS systems
or transform the reference system of the X, Y and Z axis
from ENU (East, North, Up) to NED (North, East, Down).

C. Construction of a simulation scenario

Building a complete simulated robot in MORSE involves
the creation of a new Blender file, with the robot mesh and
its components linked from external individual Blender files.
The sensors and actuators must be set as children of the
robot, so that they will move together and share data. Just as
in real robots, the relative position of the sensors with respect
to the robot frame is important, as it must be considered to
correctly locate the data when they are generated.

When a virtual robot is complete, it is itself linked to
a scene file with the virtual world in another Blender file.
Linked components can be modified or duplicated inside
the scene as necessary, using Blender’s modelling tools. All
environmental settings must be specified in this scenario file,
such as the global coordinate system. The list of the bindings
of middlewares with individual components is also defined
in the scenario file, as the script component _config.py.
The modules for the middlewares and modifiers to be used
in the scene must also be linked into the scenario file.

IV. CURRENT STATUS

A number of components are already available for
MORSE, which allows to rapidly produce test scenarios of
specific cases. Robot platforms already modelled include:
iRobot ATRV Unmanned Ground Vehicle (UGV), Yamaha
RMAX Unmanned Aerial Vehicle (UAV) and a NeoBotix
mobile platform. Robotic arms available are Mitsubishi PA-
10 and KUKA LWR, both implemented with inverse kine-
matics. A user controlled human model is also available in
MORSE and permits human robot interaction inside the sim-
ulated scenarios. Some of the sensors already implemented
in MORSE are: Cameras, Gyroscope, GPS, Accelerome-
ter, Thermometer, SICK laser and proximity detectors. The
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Fig. 5: Camera sensors with different information abstrac-
tion.

functionality of each sensor is defined within the Blender
world using both the GE interface and Python scripts. As
an example, the SICK laser works by using the ray tracing
functions existing in Blender; the field of view of the SICK
is visualised by deforming the geometry of an arc shaped
mesh, using the distances measured with ray tracing.

The camera sensor can provide data with different levels of
abstraction. Basic images can be generated using Blender’s
camera object and the VideoTexture library of the Game
Engine. These can be used, for example, to generate Digital
Terrain Maps (DTM), through stereo vision. Alternatively, a
camera can produce a semantic list of the visible objects
within its field of view, generated by using predefined
Blender functions to locate objects specifically tagged. This
permits testing higher level tasks without the burden of image
processing to identify objects. Fig. 5 illustrates these two
kinds of camera in use.

A. Practical use cases

1) ROSACE project: This project deals with the design
and development of a group of robots capable of commu-
nicating and cooperating to accomplish a given objective in
a dynamic environment. The test scenario for the project is
a search and rescue mission in the event of fire in a rural
area. In simulation, the robots must cooperate in locating
various victims, while avoiding obstacles such as buildings,
roads and fire. The MORSE scenario includes groups of 5 to
15 UGVs outfitted with thermometer sensors and simulated
communication radios. The simulation is used to study the
different cooperation strategies and the self adaptability of
the robot team in case of loss of communication. The robot
controlling agents are programmed in Java and communicate
data with MORSE via YARP, serialised using JSON, and
decoded and interpreted in both ends.

2) ACTION project: Related to the cooperation of het-
erogeneous types of robots (land, air, sea and submarine)
in various localization and detection scenarii, in complex
outdoor environments. In the first test scenario, an UGV
requests a traversability map of a certain direction to a nearby
robot helicopter (UAV). The latter flies in the direction
requested, locates obstacles that could impede the movement
of the ground vehicle, generates a map and sends it back.
Upon receiving the map, the UGV recomputes its projected
path and starts the cycle again. In simulation, both robots
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Fig. 6: Diagram of the data exchange between the different
modules in the Action test scenario.

use completely different evaluated software, running in two
separate computers. Both communicate with a single instance
of MORSE, each using a distinct middleware (Fig. 6). The
UGV is controlled with G"oM modules and communicates
with MORSE via the Pocolibs library. Meanwhile, the UAV
is driven by Orocos [26], and uses YARP to talk to MORSE!.
This scenario demonstrates the interest of the “Software-in-
the-Loop” concept, and that MORSE can link to various
middlewares.

3) Simulation of ReSSAC: The ReSSAC is an Unmanned
Autonomous Helicopter based on a YAMAHA RMax he-
licopter. The objective of the project is to perform air—to—
ground target tracking missions in an unknown environment
[27]. The evaluated software in this application is a visual
target search and tracking system implemented in Orocos.
It tracks the movement of a ground vehicle and generates
motion controls for the helicopter to follow the target. The
ReSSAC experiment is a proof of concept for the simulator,
where an existing algorithm that works in the real robot
was later tested in the simulator using “Software-in-the-
Loop”, connecting via the YARP middleware. This example
demonstrates that the simulator can be correctly connected
with the evaluated software, properly emulate the output of
the sensors, and interpret the control instructions for the
robot. In the test simulation, the ground target is made
to move with keyboard commands, while the simulated
helicopter tracks and follows the vehicle, giving the same
results as in the real life experiment.

V. FUTURE WORK

The simulation of multiple robots in MORSE is currently
limited by the processing power of the computer running
the software. Up to 15 robots with simple sensors can
be simulated in a single scenario with MORSE turning at
over 20 frames per second. The generation and processing
of image data (as in the case of simulated cameras) does
require more resources, depending on camera resolution
and data output rate. To cope with this problem, we plan
to deploy a number of simulator nodes, each one running
the same simulated scenario, but managing only a limited
number of virtual robots. The different nodes need to be
synchronised through a special node, denoted the simulation
Supervisor. Each node is responsible of one or more robot,

Both robots communicates through YARP, but this is related to the way
multi-robots interactions have been defined, and not to MORSE.
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Fig. 7: Distributed architecture of MORSE, including the
Supervisor, vHub and multiple simulation nodes.

and broadcasts to other node their positions and actions.
Concerning other objects, the information goes through the
Supervisor which is responsible of the consistency of the
whole “simulation universe”. Furthermore, the Supervisor
also provides a central management for the simulation. A
special GUI allows to start or stop nodes, to add or remove
some robots or some objects. It can allow too to introduce
hazard in the simulated environment.

Another important task in a multi-robots environment is
the simulation of robot communications. The Virtual Hub
(vHub) component, associated to the Supervisor node, will
achieve this. Using information from the simulated world
(i.e. the distance between robots, line of sight), the vHub
decides if two robots can communicate, and in which condi-
tions (packet loss, congestion, slow bandwidth ...). Moreover,
the vHub component should log all communication flow for
future analysis. Fig. 7 sums up the future extension to the
MORSE architecture. The decomposition of the simulation
in different nodes will allow to simulate numerous robots in
a realistic way. The vHub will allow to experiment with the
communication issues within the simulator.

VI. SUMMARY

We have presented a new robotics simulator, completely
based on Blender and Python. MORSE is designed for high
reusability under all kinds of robotics research. It provides
many facilities to be integrated with existing robotics soft-
ware and to simulate numerous sensor and actuators setups.
This simulator is already used in real projects, demonstrating
it can fulfil the requirements specified of modularity, mid-
dleware independence and realistic visualisation and physics.
Many features of the simulator are still in an early stage of
development, including the multi-node architecture, but the
integration with ROS, G*"oM 3 and Blender 2.5 will make
MORSE simpler to use in various robotics laboratories.

MORSE is developed as an open—source project, the
source code can be downloaded from the GIT repository:
(http://github.com/laas/morse.git)

User documentation and additional information is also
available at (http://morse.openrobots.org)
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